Ultrasonic Control Technology - List of Manufacturers, Suppliers, Companies and Products

Ultrasonic Control Technology Product List

1~4 item / All 4 items

Displayed results

Ultrasonic control technology using indirect containers

Technology for controlling nonlinear phenomena of ultrasound.

The Ultrasonic System Research Institute has developed a technology for controlling "nonlinear phenomena of ultrasound (acoustic flow)" using indirect containers. This technology utilizes (evaluates) the ultrasonic propagation characteristics (analysis results) of indirect containers, ultrasonic water tanks, and other items to control ultrasound (cavitation and acoustic flow). Furthermore, it realizes effective ultrasonic (cavitation and acoustic flow) propagation states tailored to the structure, material, and acoustic characteristics of specific target objects, by controlling the oscillation of ultrasound in accordance with the interactions between glass containers, ultrasound, and target objects. In particular, the dynamic characteristics of harmonics through acoustic flow control enable responses at the nanoscale. This has been applied and developed from examples of dispersing metal powders to nanosize. By employing control technologies for standing waves and cavitation in relation to ultrasound, as well as propagation control technologies for indirect containers, we can appropriately control cavitation and acoustic flow. Through original measurement and analysis techniques for ultrasonic propagation states, we have confirmed the evaluation of acoustic flow and numerous know-how.

  • Scientific Calculation and Simulation Software
  • Analysis and prediction system
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Small pump and ultrasonic control technology using an ultrasonic probe.

Development of "Control Technology for Nonlinear Phenomena" Using a Small Pump

The Ultrasonic System Research Institute has developed "ultrasonic control technology" that dynamically controls nonlinear phenomena related to ultrasonic propagation by utilizing a small pump for liquid circulation. Nonlinear phenomena are evaluated through analysis using an ultrasonic tester. The complex changes in ultrasound (such as ultrasonic cleaners, ultrasonic probes, etc.) are confirmed through time-series data analysis of sound pressure from ultrasonic oscillation and reception, identifying various interactions. Based on the confirmation of these interactions, the oscillation control conditions using ultrasonic probes are optimized, achieving a dynamic ultrasonic control system tailored to specific objectives. In practical applications, such as ultrasonic cleaning, the ON/OFF control (or control of flow rate and velocity, etc.) of the current liquid circulation device is optimized by considering the ultrasonic propagation characteristics related to the installation state of the device and the surface elastic waves of the target object, including the output, oscillation frequency, and control conditions of the ultrasound. In particular, by utilizing the vibration characteristics of the pump to alternately circulate liquid and gas, new nonlinear effects of ultrasound and microbubbles are realized.

  • Scientific Calculation and Simulation Software
  • Vibration and Sound Level Meter
  • Non-destructive testing

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Control technology for megahertz ultrasound applied using Shannon's juggling theorem.

Dynamic Control Method for Megahertz Ultrasound Based on Classification Techniques Related to Ultrasonic Propagation Phenomena

The Ultrasonic System Research Institute has developed a classification method for ultrasonic propagation phenomena based on the analysis results of ultrasonic sound pressure data and changes in the bispectrum. This classification has been applied to Shannon's juggling theorem to develop a "dynamic control method for megahertz ultrasound." This technology is being offered for consulting proposals and implementation support. To utilize ultrasonic propagation phenomena stably and efficiently, it is necessary to examine the response characteristics and interactions related to conditions other than oscillators and transducers, as well as to develop dedicated tools. By examining oscillation waveforms and control conditions, new ultrasonic effects (Note 1: Original nonlinear resonance phenomenon) can be discovered. Utilizing ultrasonic phenomena primarily driven by nonlinear effects according to specific purposes enables highly efficient use of ultrasound. In particular, there has been an increase in achievements in nanolevel ultrasonic technology. Note 1: Original nonlinear resonance phenomenon The generation of harmonics caused by original oscillation control, which is realized at high amplitudes due to resonance phenomena, results in the resonance phenomenon of ultrasonic vibrations.

  • IoT
  • Non-destructive testing
  • Scientific Calculation and Simulation Software

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Ultrasonic control technology using two function generators.

New ultrasonic dynamic control technology

The Ultrasonic System Research Institute has developed a completely new dynamic control technology for ultrasound using two function generators. This technology enables the control of ultrasonic nonlinear phenomena and resonance phenomena through different types of (sweep) oscillation using two different waveforms. By applying this technology, we are developing practical methods to relieve surface residual stress in components and various application technologies, and we provide consulting services. Standard settings: 1) Sweep oscillation control from 3 MHz to 20 MHz 2) Sweep oscillation control from 60 kHz to 13 MHz 3) Ultrasonic dynamic control using a 42 kHz 35W ultrasonic cleaner (realizing dynamic fluctuation-type ultrasonic propagation control) Note: Regarding the surface of the ultrasonic cleaner's tank, surface residual stress relief and uniform treatment are performed using an ultrasonic oscillation control probe and a degassing fine bubble generation liquid circulation device. As a result of the uniformization effect, ultrasonic control using harmonics above 200 MHz has been achieved.

  • Scientific Calculation and Simulation Software
  • Vibration and Sound Level Meter
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration